Use of fully denaturing HPLC for UGT1A1 genotyping in Gilbert syndrome.
نویسندگان
چکیده
References 1. Parving HH, Oxenboll B, Svendsen PA, Christiansen JS, Andersen AR. Early detection of patients at risk of developing diabetic nephropathy: a longitudinal study of urinary albumin excretion. Acta Endocrinol (Copenh) 1982; 100:550–5. 2. Viberti GC, Hill RD, Jarrett RJ, Argyropoulos A, Mahmud U, Keen H. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet 1982;1:1430–2. 3. Mogensen CE. Microalbuminuria as a predictor of clinical diabetic nephropathy. Kidney Int 1987;31:673–89. 4. Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes 1983;32(Suppl 2):64–78. 5. Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulindependent patients. N Engl J Med 1984;311:89–93. 6. Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med 1984;310:356–60. 7. Jarrett RJ, Viberti GC, Argyropoulos A, Hill RD, Mahmud U, Murrells TJ. Microalbuminuria predicts mortality in noninsulin-dependent diabetics. Diabet Med 1984;1:17–9. 8. Schmitz A, Vaeth M. Microalbuminuria: a major risk factor in noninsulindependent diabetes. A 10-year follow-up study of 503 patients. Diabet Med 1988;5:126–34. 9. Messent JW, Elliott TG, Hill RD, Jarrett RJ, Keen H, Viberti GC. Prognostic significance of microalbuminuria in insulin-dependent diabetes mellitus: a twenty-three year follow-up study. Kidney Int 1992;41:836–9. 10. Rossing P, Hougaard P, Borch-Johnsen K, Parving HH. Predictors of mortality in insulin dependent diabetes: 10 year observational follow up study. BMJ 1996;313:779–84. 11. Allen KV, Walker JD. Microalbuminuria and mortality in long-duration type 1 diabetes. Diabetes Care 2003;26:2389–91. 12. Weis U, Turner B, Gibney J, Watts GF, Burke V, Shaw KM, et al. Long-term predictors of coronary artery disease and mortality in type 1 diabetes. QJM 2001;94:623–30. 13. Damsgaard EM, Froland A, Jorgensen OD, Mogensen CE. Eight to nine year mortality in known noninsulin dependent diabetics and controls. Kidney Int 1992;41:731–5. 14. Damsgaard EM, Froland A, Jorgensen OD, Mogensen CE. Microalbuminuria as predictor of increased mortality in elderly people. BMJ 1990;300:297– 300. 15. Borch-Johnsen K, Feldt-Rasmussen B, Strandgaard S, Schroll M, Jensen JS. Urinary albumin excretion. An independent predictor of ischemic heart disease. Arterioscler Thromb Vasc Biol 1999;19:1992–7. 16. Hillege HL, Janssen WM, Bak AA, Diercks GF, Grobbee DE, Crijns HJ et al. Microalbuminuria is common, also in a nondiabetic, nonhypertensive population, and an independent indicator of cardiovascular risk factors and cardiovascular morbidity. J Intern Med 2001;249:519–26. 17. Hillege HL, Fidler V, Diercks GF, van Gilst WH, De Zeeuw D, van Veldhuisen DJ et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation 2002;106:1777–82. 18. Giampietro O, Penno G, Clerico A, Cruschelli L, Cecere M. How and how long to store urine samples before albumin radioimmunoassay: a practical response. Clin Chem 1993;39:533–6. 19. Torffvit O, Wieslander J. A simplified enzyme-linked immunosorbent assay for urinary albumin. Scand J Clin Lab Invest 1986;46:545–8. 20. Townsend JC. Effect of storage temperature on the precipitation of albumin from urine. Clin Chem 1986;32:1986–7. 21. Innanen VT, Groom BM, de Campos FM. Microalbumin and freezing. Clin Chem 1997;43:1093–4. 22. Collins AC, Sethi M, MacDonald FA, Brown D, Viberti GC. Storage temperature and differing methods of sample preparation in the measurement of urinary albumin. Diabetologia 1993;36:993–7. 23. Tencer J, Thysell H, Andersson K, Grubb A. Stability of albumin, protein HC, immunoglobulin G, and -chain immunoreactivity, orosomucoid and 1-antitrypsin in urine stored at various conditions. Scand J Clin Lab Invest 1994;54:199–206. 24. Osberg I, Chase HP, Garg SK, DeAndrea A, Harris S, Hamilton R, et al. Effects of storage time and temperature on measurement of small concentrations of albumin in urine. Clin Chem 1990;36:1428–30. 25. Elving LD, Bakkeren JA, Jansen MJ, Kat Angelino CM, de Nobel E, van Munster PJ. Screening for microalbuminuria in patients with diabetes mellitus: frozen storage of urine samples decreases their albumin content. Clin Chem 1989;35:308–10. 26. MacNeil ML, Mueller PW, Caudill SP, Steinberg KK. Considerations when measuring urinary albumin: precision, substances that may interfere, and conditions for sample storage. Clin Chem 1991;37:2120–3. 27. d’Eril GM, Valenti G, Pastore R, Pankopf S. More on stability of albumin, N-acetylglucosaminidase, and creatinine in urine samples. Clin Chem 1994;40:339–40. 28. Pinto-Sietsma SJ, Janssen WM, Hillege HL, Navis G, De Zeeuw D, de Jong PE. Urinary albumin excretion is associated with renal functional abnormalities in a nondiabetic population. J Am Soc Nephrol 2000;11:1882–8. 29. Tencer J, Thysell H, Andersson K, Grubb A. Long-term stability of albumin, protein HC, immunoglobulin G, and -chain-immunoreactivity, orosomucoid and 1-antitrypsin in urine stored at 20 degrees C. Scand J Urol Nephrol 1997;31:67–71. 30. Shield JP, Hunt LP, Morgan JE, Pennock CA. Are frozen urine samples acceptable for estimating albumin excretion in research? Diabet Med 1995;12:713–6. 31. Townsend JC, Blair PJ, Forrest AR. Effect of storage pH on precipitation of albumin from urine from diabetics. Clin Chem 1988;34:1355–6. 32. Rowe DJ, Dawnay A, Watts GF. Microalbuminuria in diabetes mellitus: review and recommendations for the measurement of albumin in urine. Ann Clin Biochem 1990;27:297–312. 33. Schultz CJ, Dalton RN, Turner C, Neil HA, Dunger DB. Freezing method affects the concentration and variability of urine proteins and the interpretation of data on microalbuminuria. The Oxford Regional Prospective Study Group. Diabet Med 2000;17:7–14. 34. Silver AC, Dawnay A, Landon J. Specimen preparation for assay of albumin in urine. Clin Chem 1987;33:199–200.
منابع مشابه
UGT1A1 gene linkage analysis: application of polymorphic markers rs4148326/rs4124874 in the Iranian population
Objective(s): Mutations in the UGT1A1 gene are responsible for hyperbilirubinemia syndromes including Crigler-Najjar type 1 and 2 and Gilbert syndrome. In view of the genetic heterogeneity and involvement of large numbers of the disease causing mutations, the application of polymorphic markers in the UGTA1 gene could be useful in molecular diagnosis of the disease. Materials and Methods: In the...
متن کاملSnapback primer genotyping of the Gilbert syndrome UGT1A1 (TA)(n) promoter polymorphism by high-resolution melting.
BACKGROUND Gilbert syndrome, a chronic nonhemolytic unconjugated hyperbilirubinemia, is associated with thymine-adenine (TA) insertions in the UGT1A1 (UDP glucuronosyltransferase 1 family, polypeptide A1) promoter. The UGT1A1 promoter genotype also correlates with toxicity induced by the chemotherapeutic drug irinotecan. Current closed-tube assays for genotyping the UGT1A1 (TA)(n) promoter poly...
متن کاملDNA base bulge vs unmatched end formation in probe-based diagnostic insertion/deletion genotyping: genotyping the UGT1A1 (TA)(n) polymorphism by real-time fluorescence PCR.
BACKGROUND Gilbert syndrome is a clinically inconsequential entity of mild unconjugated hyperbilirubinemia caused by an A(TA)(n)TAA insertion polymorphism (UGT1A1*28) in the promoter region of the gene coding for the enzyme UDP-glucuronosyltransferase 1 (EC 2.4.1. 17; UGT1A1). Present methods for genotyping this polymorphism are laborious. METHODS Hybridization probes were designed complement...
متن کاملRapid molecular diagnosis of the Gilbert's syndrome-associated exon 1 mutation within the UGT1A1 gene.
Gilbert's syndrome is suspected in patients with unconjugated hyperbilirubinemia caused by decreased activity of the UDP-glucuronosyltransferase 1A1 (UGT1A1) gene in the absence of abnormal liver function and hemolysis. The major genetic variants underlying Gilbert's syndrome are TATA-box repeats of the promoter region and exon 1 G211A of the coding region, particularly in Asians. The efficacy ...
متن کاملPharmacogenetics of anticancer agents: lessons from amonafide and irinotecan.
Amonafide and irinotecan are anticancer drugs representative of the clinical relevance of N-acetyltransferase (NAT) and uridine diphosphate glucuronosyltransferase (UGT) polymorphisms in cancer chemotherapy, respectively. Amonafide, a substrate for the polymorphic NAT2, has an active metabolite, N-acetyl-amonafide. Using caffeine as a probe, slow and rapid acetylators of amonafide were identifi...
متن کاملRare TA repeats in promoter TATA box of the UDP glucuronosyltranferase (UGT1A1) gene in Croatian subjects.
BACKGROUND Gilbert's syndrome is a chronic or recurrent mild unconjugated hyperbilirubinemia caused by decreased activity of UDP glucuronosyltranferase (UGT1A1). The most common cause of Gilbert's syndrome in Caucasians is homozygous variant of the A(TA)7TAA promoter polymorphism. Alleles with five or eight TA repeats have also been described, but they are very rare in Caucasian populations. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical chemistry
دوره 51 11 شماره
صفحات -
تاریخ انتشار 2005